动态神经网络时间序列预测

news/2024/7/17 4:42:33

      大家好,我是带我去滑雪!

     神经网络投照是否存在反锁与记忆可以分为静态神经网络与动态神经网络。动态神经网络是指神经网络带有反做与记忆功能,无论是局部反馈还是全局反锁。通过反馈与记忆,神经网络能将前一时刻的数据保留,使其加人到下一时刻数据的计算,使网络不仅具有动态性而且保留的系统信息也更加完整。动态神经网络有许多应用,例如,金融分析师用于分析某只股票、基金或者其他金融工具未来某时点的价格,工程师用于预测最近一次可能的飞机引擎故障时间等,可见动态神经网络在分析、仿真、系统监测与控制等领域有重要应用。根据动态神经网络实现系统动态的方法不同,将之分为两类:一类是回归神经网络,它是由静态神经元和网络输出反馈构成的动态网络,典型的有 NARX 回归神经网络;另一类是通过神经元反馈形成,的神经网络,如全回归神经网络、Elman 神经网络、PID神经网络等等。本期将动态网络应用于时间序列的预测中,实现通过 NARX 动态神经网络对时问序列数据的建模仿真及效果评价。

目录

一、问题描述与模型建立

(1)问题描述

(2)模型建立

二、代码实现与结果分析

(1)建立非线性自回归模型

(2)数据准备工作

(3)训练函数、误差函数、绘图函数确定

(3)NARX神经网络模型

(5)结果分析


一、问题描述与模型建立

(1)问题描述

      中和反应是化学反应中复分解反应的一种,是指酸和破互相交换组分、生成盐和水的反应,在中和的过程中,酸里的氢离子和碱中的氢氧根离子会结合成水。中和反应发生后最终产物的PH 值不一定是7。如果一强酸与强破参与中和反应,其产物的PH则会是7。如强酸盐酸和强碱氢氧化钠发生中和反应,产生氣化钠和水。本案例使用 MATLAB 自带案例数据,即给定两个酸碱溶液的流速来预测和反应过程后溶液的PH值。

(2)模型建立

       数据使用两个含有2001 个监测点的时间序列数据。其中 PhInputs 为一个1×2001维的cell,代表了2001 个监测时间点酸碱溶液的流速。PhTargets 为 1×2001 维的cell,代表中和反应后溶液的pH 值。本研究的目的就是通过当前的酸碱溶液流速预测中和反应后溶液的pH 值大小。

二、代码实现与结果分析

(1)建立非线性自回归模型

load phdata
inputSeries = phInputs;
targetSeries = phTargets;%% 建立非线性自回归模型
inputDelays = 1:2;
feedbackDelays = 1:2;
hiddenLayerSize = 10;
net = narxnet(inputDelays,feedbackDelays,hiddenLayerSize);

(2)数据准备工作

net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'};
net.inputs{2}.processFcns = {'removeconstantrows','mapminmax'};%% 时间序列数据准备工作
[inputs,inputStates,layerStates,targets] = preparets(net,inputSeries,{},targetSeries);%% 训练数据、验证数据、测试数据划分
net.divideFcn = 'dividerand';  
net.divideMode = 'value';  
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;

(3)训练函数、误差函数、绘图函数确定

net.trainFcn = 'trainlm';  % Levenberg-Marquardtnet.performFcn = 'mse';  % Mean squared errornet.plotFcns = {'plotperform','plottrainstate','plotresponse', ...'ploterrcorr', 'plotinerrcorr'};[net,tr] = train(net,inputs,targets,inputStates,layerStates);outputs = net(inputs,inputStates,layerStates);
errors = gsubtract(targets,outputs);
performance = perform(net,targets,outputs)trainTargets = gmultiply(targets,tr.trainMask);
valTargets = gmultiply(targets,tr.valMask);
testTargets = gmultiply(targets,tr.testMask);
trainPerformance = perform(net,trainTargets,outputs)
valPerformance = perform(net,valTargets,outputs)
testPerformance = perform(net,testTargets,outputs)figure, plotperform(tr)
figure, plottrainstate(tr)
figure, plotregression(targets,outputs)
figure, plotresponse(targets,outputs)
figure, ploterrcorr(errors)
figure, plotinerrcorr(inputs,errors)

(3)NARX神经网络模型

narx_net_closed = closeloop(net);
view(net)
view(narx_net_closed)
phInputs_c=phInputs(1500:2000);
PhTargets_c=phTargets(1500:2000);[p1,Pi1,Ai1,t1] = preparets(narx_net_closed,phInputs_c,{},PhTargets_c);
yp1 = narx_net_closed(p1,Pi1,Ai1);
plot([cell2mat(yp1)' cell2mat(t1)'])

(5)结果分析


更多优质内容持续发布中,请移步主页查看。

若有问题可邮箱联系:1736732074@qq.com 

博主的WeChat:TCB1736732074

   点赞+关注,下次不迷路!


https://www.xjx100.cn/news/3092586.html

相关文章

Python Opencv实践 - 二维码和条形码识别

使用pyzbar模块来识别二维码和条形码。ZBar是一个开源软件,用来从图像中读取条形码,支持多种编码,比如EAN-13/UPC-A、UPC-E、EAN-8、代码128、代码39、交错2/5以及二维码。 pyzbar是python封装ZBar的模块,我们用它来做条形码和二维码的识别。…

Java 1.0 到 Java 17历程

Java 自 1995 年发布以来,经历了多个版本的更新,每个版本都引入了新的特性和改进。以下是从 Java 1.0 到 Java 17(截至我所掌握的最新信息)的主要新特性概览: Java 1.0 (1996) 初始版本,包含了Java的基础…

第一次参加算法比赛是什么感受?

大家好,我是怒码少年小码。 冬日暖阳,好日常在。今天中午在食堂干饭的时候,我的手机📱收到了一条收货信息。 阿?什么玩意儿?我又买啥了? 个败家玩意,我都准备好叨叨我自己&#x…

Vue项目 配置项设置

一、项目运行时浏览器自动打开 找到package.json文件 找到"sctipts"配置项 在"serve"配置项最后加上--open "scripts": {"serve": "vue-cli-service serve --open","build": "vue-cli-service build&quo…

如何使用rclone将腾讯云COS桶中的数据同步到华为云OBS

在多云策略与数据迁移趋势下,企业往往需要将数据在不同云服务提供商之间进行迁移。本文介绍如何使用rclone工具同步腾讯云COS(Cloud Object Storage)桶中的数据到华为云OBS(Object Storage Service)。先决条件是您已经…

代码随想录 10.13 || 二叉树 LeetCode 235.二叉搜索树的最近公共祖先、701.二叉搜索树中的插入操作、450.删除二叉搜索树中的节点

二叉树的定义: 回顾一下二叉树的定义,加固记忆。 struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode() : val(0), left(nullptr), right(nullptre) {}TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}TreeNode(int x, Tre…

Redis从入门到精通(三)-高阶篇

文章目录 0. 前言[【高阶篇】3.1 Redis协议(RESP )详解](https://blog.csdn.net/wangshuai6707/article/details/132742584)[【高阶篇】3.3 Redis之底层数据结构简单动态字符串(SDS)详解](https://blog.csdn.net/wangshuai6707/article/details/131101404)[【高阶篇】3.4 Redis…

手把手带你在AutoDL上部署InternLM-Chat-7B Transformers

手把手带你在AutoDL上部署InternLM-Chat-7B Transformers 调用 项目地址:https://github.com/KMnO4-zx/self_llm.git 如果大家有其他模型想要部署教程,可以来仓库提交issue哦~ 也可以自己提交PR! InternLM-Chat-7B Transformers 部署调用 环…