kafka权限认证 topic权限认证 权限动态认证-亲测成功

news/2024/5/20 21:20:06

kafka权限认证 topic权限认证 权限动态认证-亲测成功

kafka动态认证 自定义认证 安全认证-亲测成功

MacBook Linux安装Kafka

Linux解压安装Kafka

介绍

1、Kafka的权限分类

  • 身份认证(Authentication):对client 与服务器的连接进行身份认证,brokers和zookeeper之间的连接进行Authentication(producer 和 consumer)、其他 brokers、tools与 brokers 之间连接的认证。上一篇博文介绍了连接的身份认证。

  • 权限控制(Authorization):实现对于消息级别的权限控制,clients的读写操作进行Authorization:(生产/消费/group)数据权限。这节我们讲解Topic权限的控制。

kafka配置自定义权限认证

修改配置文件,在kafka主目录下,D:\kafka_2.12-3.5.0\config\server.properties

enable_db_acl = true
authorizer.class.name=com.liang.kafka.auth.handler.MyAclAuthorizer
super.users=admin;liangdruid.name = mysql_db
druid.type = com.alibaba.druid.pool.DruidDataSource
druid.url = jdbc:mysql://127.0.0.1:3306/test?useSSL=FALSE&useUnicode=true&characterEncoding=UTF-8&allowMultiQueries=true&serverTimezone=Asia/Shanghai
druid.username = root
druid.password = root
druid.filters = stat
druid.driverClassName = com.mysql.cj.jdbc.Driver
druid.initialSize = 5
druid.minIdle = 2
druid.maxActive = 50
druid.maxWait = 60000
druid.timeBetweenEvictionRunsMillis = 60000
druid.minEvictableIdleTimeMillis = 300000
druid.validationQuery = SELECT 'x'
druid.testWhileIdle = true
druid.testOnBorrow = false
druid.poolPreparedStatements = false
druid.maxPoolPreparedStatementPerConnectionSize = 20

其中:

  • enable_db_acl用来控制是否开启动态权限认证。
  • authorizer.class.name配置自定义权限的类

windows完整配置如下:

# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.#
# This configuration file is intended for use in ZK-based mode, where Apache ZooKeeper is required.
# See kafka.server.KafkaConfig for additional details and defaults
############################## Server Basics ############################## The id of the broker. This must be set to a unique integer for each broker.
broker.id=0############################# Socket Server Settings ############################## The address the socket server listens on. If not configured, the host name will be equal to the value of
# java.net.InetAddress.getCanonicalHostName(), with PLAINTEXT listener name, and port 9092.
#   FORMAT:
#     listeners = listener_name://host_name:port
#   EXAMPLE:
#     listeners = PLAINTEXT://your.host.name:9092
#listeners=PLAINTEXT://:9092# Listener name, hostname and port the broker will advertise to clients.
# If not set, it uses the value for "listeners".
#advertised.listeners=PLAINTEXT://your.host.name:9092
advertised.listeners=SASL_PLAINTEXT://localhost:9092# Maps listener names to security protocols, the default is for them to be the same. See the config documentation for more details
#listener.security.protocol.map=PLAINTEXT:PLAINTEXT,SSL:SSL,SASL_PLAINTEXT:SASL_PLAINTEXT,SASL_SSL:SASL_SSL
sasl.enabled.mechanisms = PLAIN
sasl.mechanism.inter.broker.protocol = PLAIN
security.inter.broker.protocol = SASL_PLAINTEXT
listeners = SASL_PLAINTEXT://localhost:9092enable_db_acl = true
authorizer.class.name=com.liang.kafka.auth.handler.MyAclAuthorizer
super.users=admin;liangenable_db_auth = true
listener.name.sasl_plaintext.plain.sasl.server.callback.handler.class=com.liang.kafka.auth.handler.MyPlainServerCallbackHandler
druid.name = mysql_db
druid.type = com.alibaba.druid.pool.DruidDataSource
druid.url = jdbc:mysql://127.0.0.1:3306/testdb?useSSL=FALSE&useUnicode=true&characterEncoding=UTF-8&allowMultiQueries=true&serverTimezone=Asia/Shanghai
druid.topic.url = jdbc:mysql://127.0.0.1:3306/topicdb?useSSL=FALSE&useUnicode=true&characterEncoding=UTF-8&allowMultiQueries=true&serverTimezone=Asia/Shanghai
druid.username = root
druid.password = root
druid.filters = stat
druid.driverClassName = com.mysql.cj.jdbc.Driver
druid.initialSize = 5
druid.minIdle = 2
druid.maxActive = 50
druid.maxWait = 60000
druid.timeBetweenEvictionRunsMillis = 60000
druid.minEvictableIdleTimeMillis = 300000
druid.validationQuery = SELECT 'x'
druid.testWhileIdle = true
druid.testOnBorrow = false
druid.poolPreparedStatements = false
druid.maxPoolPreparedStatementPerConnectionSize = 20# The number of threads that the server uses for receiving requests from the network and sending responses to the network
num.network.threads=3# The number of threads that the server uses for processing requests, which may include disk I/O
num.io.threads=8# The send buffer (SO_SNDBUF) used by the socket server
socket.send.buffer.bytes=102400# The receive buffer (SO_RCVBUF) used by the socket server
socket.receive.buffer.bytes=102400# The maximum size of a request that the socket server will accept (protection against OOM)
socket.request.max.bytes=104857600############################# Log Basics ############################## A comma separated list of directories under which to store log files
log.dirs=D:\kafka_2.12-3.5.0\kafka-logs# The default number of log partitions per topic. More partitions allow greater
# parallelism for consumption, but this will also result in more files across
# the brokers.
num.partitions=1# The number of threads per data directory to be used for log recovery at startup and flushing at shutdown.
# This value is recommended to be increased for installations with data dirs located in RAID array.
num.recovery.threads.per.data.dir=1############################# Internal Topic Settings  #############################
# The replication factor for the group metadata internal topics "__consumer_offsets" and "__transaction_state"
# For anything other than development testing, a value greater than 1 is recommended to ensure availability such as 3.
offsets.topic.replication.factor=1
transaction.state.log.replication.factor=1
transaction.state.log.min.isr=1############################# Log Flush Policy ############################## Messages are immediately written to the filesystem but by default we only fsync() to sync
# the OS cache lazily. The following configurations control the flush of data to disk.
# There are a few important trade-offs here:
#    1. Durability: Unflushed data may be lost if you are not using replication.
#    2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
#    3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to excessive seeks.
# The settings below allow one to configure the flush policy to flush data after a period of time or
# every N messages (or both). This can be done globally and overridden on a per-topic basis.# The number of messages to accept before forcing a flush of data to disk
#log.flush.interval.messages=10000# The maximum amount of time a message can sit in a log before we force a flush
#log.flush.interval.ms=1000############################# Log Retention Policy ############################## The following configurations control the disposal of log segments. The policy can
# be set to delete segments after a period of time, or after a given size has accumulated.
# A segment will be deleted whenever *either* of these criteria are met. Deletion always happens
# from the end of the log.# The minimum age of a log file to be eligible for deletion due to age
log.retention.hours=168# A size-based retention policy for logs. Segments are pruned from the log unless the remaining
# segments drop below log.retention.bytes. Functions independently of log.retention.hours.
#log.retention.bytes=1073741824# The maximum size of a log segment file. When this size is reached a new log segment will be created.
#log.segment.bytes=1073741824# The interval at which log segments are checked to see if they can be deleted according
# to the retention policies
log.retention.check.interval.ms=300000############################# Zookeeper ############################## Zookeeper connection string (see zookeeper docs for details).
# This is a comma separated host:port pairs, each corresponding to a zk
# server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".
# You can also append an optional chroot string to the urls to specify the
# root directory for all kafka znodes.
zookeeper.connect=localhost:2181# Timeout in ms for connecting to zookeeper
zookeeper.connection.timeout.ms=18000############################# Group Coordinator Settings ############################## The following configuration specifies the time, in milliseconds, that the GroupCoordinator will delay the initial consumer rebalance.
# The rebalance will be further delayed by the value of group.initial.rebalance.delay.ms as new members join the group, up to a maximum of max.poll.interval.ms.
# The default value for this is 3 seconds.
# We override this to 0 here as it makes for a better out-of-the-box experience for development and testing.
# However, in production environments the default value of 3 seconds is more suitable as this will help to avoid unnecessary, and potentially expensive, rebalances during application startup.
group.initial.rebalance.delay.ms=0

Linux下完整配置如下

# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.# see kafka.server.KafkaConfig for additional details and defaults############################# Server Basics ############################## The id of the broker. This must be set to a unique integer for each broker.
broker.id = 999############################# Socket Server Settings ############################## The address the socket server listens on. It will get the value returned from
# java.net.InetAddress.getCanonicalHostName() if not configured.
#   FORMAT:
#     listeners = listener_name://host_name:port
#   EXAMPLE:
#     listeners = PLAINTEXT://your.host.name:9092
# listeners=PRIVATE://:9092,PUBLIC://:9093sasl.enabled.mechanisms = PLAIN
sasl.mechanism.inter.broker.protocol = PLAIN
security.inter.broker.protocol = SASL_PLAINTEXT
listeners = SASL_PLAINTEXT://:9092enable_db_acl = true
authorizer.class.name=com.liang.kafka.auth.handler.MyAclAuthorizer
super.users=admin;liangenable_db_auth = true
listener.name.sasl_plaintext.plain.sasl.server.callback.handler.class=com.liang.kafka.auth.handler.MyPlainServerCallbackHandler
druid.name = mysql_db
druid.type = com.alibaba.druid.pool.DruidDataSource
druid.url = jdbc:mysql://192.168.1.77:3306/testdb?useSSL=FALSE&useUnicode=true&characterEncoding=UTF-8&allowMultiQueries=true&serverTimezone=Asia/Shanghai
druid.topic.url = jdbc:mysql://192.168.1.77:3306/topicdb?useSSL=FALSE&useUnicode=true&characterEncoding=UTF-8&allowMultiQueries=true&serverTimezone=Asia/Shanghai
druid.username = root
druid.password = root
druid.filters = stat
druid.driverClassName = com.mysql.cj.jdbc.Driver
druid.initialSize = 5
druid.minIdle = 2
druid.maxActive = 50
druid.maxWait = 60000
druid.timeBetweenEvictionRunsMillis = 60000
druid.minEvictableIdleTimeMillis = 300000
druid.validationQuery = SELECT 'x'
druid.testWhileIdle = true
druid.testOnBorrow = false
druid.poolPreparedStatements = false
druid.maxPoolPreparedStatementPerConnectionSize = 20# Hostname and port the broker will advertise to producers and consumers. If not set,
# it uses the value for "listeners" if configured.  Otherwise, it will use the value
# returned from java.net.InetAddress.getCanonicalHostName().
advertised.listeners = SASL_PLAINTEXT://192.168.1.77:10092# Maps listener names to security protocols, the default is for them to be the same. See the config documentation for more details# The number of threads that the server uses for receiving requests from the network and sending responses to the network
num.network.threads=3# The number of threads that the server uses for processing requests, which may include disk I/O
num.io.threads=8# The send buffer (SO_SNDBUF) used by the socket server
socket.send.buffer.bytes=102400# The receive buffer (SO_RCVBUF) used by the socket server
socket.receive.buffer.bytes=102400# The maximum size of a request that the socket server will accept (protection against OOM)
socket.request.max.bytes=104857600############################# Log Basics ############################## A comma separated list of directories under which to store log files
log.dirs=/opt/kafka/kafka-logs# The default number of log partitions per topic. More partitions allow greater
# parallelism for consumption, but this will also result in more files across
# the brokers.
num.partitions=1# The number of threads per data directory to be used for log recovery at startup and flushing at shutdown.
# This value is recommended to be increased for installations with data dirs located in RAID array.
num.recovery.threads.per.data.dir=1############################# Internal Topic Settings  #############################
# The replication factor for the group metadata internal topics "__consumer_offsets" and "__transaction_state"
# For anything other than development testing, a value greater than 1 is recommended to ensure availability such as 3.
offsets.topic.replication.factor=1
transaction.state.log.replication.factor=1
transaction.state.log.min.isr=1############################# Log Flush Policy ############################## Messages are immediately written to the filesystem but by default we only fsync() to sync
# the OS cache lazily. The following configurations control the flush of data to disk.
# There are a few important trade-offs here:
#    1. Durability: Unflushed data may be lost if you are not using replication.
#    2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
#    3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to excessive seeks.
# The settings below allow one to configure the flush policy to flush data after a period of time or
# every N messages (or both). This can be done globally and overridden on a per-topic basis.# The number of messages to accept before forcing a flush of data to disk
#log.flush.interval.messages=10000# The maximum amount of time a message can sit in a log before we force a flush
#log.flush.interval.ms=1000############################# Log Retention Policy ############################## The following configurations control the disposal of log segments. The policy can
# be set to delete segments after a period of time, or after a given size has accumulated.
# A segment will be deleted whenever *either* of these criteria are met. Deletion always happens
# from the end of the log.# The minimum age of a log file to be eligible for deletion due to age
log.retention.hours=168# A size-based retention policy for logs. Segments are pruned from the log unless the remaining
# segments drop below log.retention.bytes. Functions independently of log.retention.hours.
#log.retention.bytes=1073741824# The maximum size of a log segment file. When this size is reached a new log segment will be created.
log.segment.bytes=1073741824# The interval at which log segments are checked to see if they can be deleted according
# to the retention policies
log.retention.check.interval.ms=300000############################# Zookeeper ############################## Zookeeper connection string (see zookeeper docs for details).
# This is a comma separated host:port pairs, each corresponding to a zk
# server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".
# You can also append an optional chroot string to the urls to specify the
# root directory for all kafka znodes.
zookeeper.connect=127.0.0.1:2181# Timeout in ms for connecting to zookeeper
zookeeper.connection.timeout.ms=18000############################# Group Coordinator Settings ############################## The following configuration specifies the time, in milliseconds, that the GroupCoordinator will delay the initial consumer rebalance.
# The rebalance will be further delayed by the value of group.initial.rebalance.delay.ms as new members join the group, up to a maximum of max.poll.interval.ms.
# The default value for this is 3 seconds.
# We override this to 0 here as it makes for a better out-of-the-box experience for development and testing.
# However, in production environments the default value of 3 seconds is more suitable as this will help to avoid unnecessary, and potentially expensive, rebalances during application startup.
group.initial.rebalance.delay.ms=0
自定义实现topic权限认证

用户查询,订阅或发送topic时,判断是否有此topic的权限,订阅时有没有订阅分组的权限等。

maven项目引入相关的依赖包,pom添加如下依赖包

        <dependency><groupId>org.apache.kafka</groupId><artifactId>kafka_2.13</artifactId><version>2.8.1</version></dependency><dependency><groupId>cn.hutool</groupId><artifactId>hutool-cache</artifactId><version>5.7.21</version></dependency>

动态topic权限认证完整代码如下:

package com.liang.kafka.auth.handler;import cn.hutool.core.collection.CollUtil;
import com.alibaba.druid.pool.DruidDataSource;
import com.liang.kafka.auth.cache.LocalCache;
import com.liang.kafka.auth.util.DataSourceUtil;
import org.apache.kafka.common.Endpoint;
import org.apache.kafka.common.acl.AclBinding;
import org.apache.kafka.common.acl.AclBindingFilter;
import org.apache.kafka.common.acl.AclOperation;
import org.apache.kafka.common.resource.PatternType;
import org.apache.kafka.common.resource.ResourcePattern;
import org.apache.kafka.common.resource.ResourceType;
import org.apache.kafka.server.authorizer.*;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;import java.io.IOException;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.*;
import java.util.concurrent.CompletionStage;
import java.util.stream.Collectors;
import static com.liang.kafka.auth.constants.Constants.*;/***  kafka acl 自定义鉴权*  配置方法:在server.properties添加如下配置:*  super.users 超级用户,多个用;隔开*  authorizer.class.name=com.liang.kafka.auth.handler.MyAclAuthorizer*  liang*/
public class MyAclAuthorizer  implements Authorizer {private static final Logger logger = LoggerFactory.getLogger(MyAclAuthorizer.class);/*** 数据源*/private DruidDataSource dataSource = null;private static final String SUPER_USERS_PROP = "super.users";/*** 超级管理员*/private Set<String> superUserSet;/*** 是否开启数据库acl验证*/private boolean enableDbAcl;@Overridepublic Map<Endpoint, ? extends CompletionStage<Void>> start(AuthorizerServerInfo authorizerServerInfo) {//logger.info("------------------start");return new HashMap<>();}/***  实现你的访问控制逻辑*/@Overridepublic List<AuthorizationResult> authorize(AuthorizableRequestContext authorizableRequestContext, List<Action> list) {return list.stream().map(action -> authorizeAction(authorizableRequestContext, action)).collect(Collectors.toList());}/*** 访问控制逻辑处理*/private AuthorizationResult authorizeAction(AuthorizableRequestContext authorizableRequestContext, Action action) {ResourcePattern resource = action.resourcePattern();if (resource.patternType() != PatternType.LITERAL) {throw new IllegalArgumentException("Only literal resources are supported. Got: " + resource.patternType());}//是否开启数据库acl验证if (!enableDbAcl) {return AuthorizationResult.ALLOWED;}String principal = authorizableRequestContext.principal().getName();AclOperation operation = action.operation();//logger.info("------resource type:{}---name:{}----operation:{}------用户名principal:{}", resource.resourceType(), resource.name(), operation.name(), principal);//1 超级用户直接通过if (superUserSet.contains(principal)) {//logger.info("-------------------超级用户直接通过");return AuthorizationResult.ALLOWED;}//2 资源类型为 Cluster 直接不通过if (resource.resourceType().equals(ResourceType.CLUSTER)) {logger.error("-------------------资源类型为Cluster直接不通过");return AuthorizationResult.DENIED;}//3 资源类型为 TransactionalId、DelegationToken 直接通过if (resource.resourceType().equals(ResourceType.TRANSACTIONAL_ID) || resource.resourceType().equals(ResourceType.DELEGATION_TOKEN)) {//logger.info("-------------------资源类型为 TransactionalId、DelegationToken 直接通过");return AuthorizationResult.ALLOWED;}String username = principal;//4 资源类型为 group 只能用默认组消费if (resource.resourceType().equals(ResourceType.GROUP)) {if (isGroup(resource.name(), username)) {return AuthorizationResult.ALLOWED;}logger.error("------------------资源类型为 group:{} 只能用默认分组消费,直接不通过", resource.name());return AuthorizationResult.DENIED;}//5 查询数据库权限配置表信息,找到则通过,否则不通过if (isAcls(resource.name(), username)) {return AuthorizationResult.ALLOWED;}return AuthorizationResult.DENIED;}/*** 判断是否为 默认分组: default_group*/private boolean isGroup(String resourceName, String username) {String defaultGroup = username + KAFKA_GROUP_SPLIT + "default_group";if (resourceName.equals(defaultGroup)) {return true;}return false;}/*** 查询数据库,判断是否有权限*/private Boolean isAcls(String resourceName, String username) {List<String> topics = LocalCache.getCache(username);if (CollUtil.isEmpty(topics)) {//从数据库查询topics = queryDb(username);if (CollUtil.isEmpty(topics)) {return Boolean.FALSE;}LocalCache.addCache(username, topics);}Boolean checkBool = checkTopic(resourceName, topics, username);return checkBool;}/*** 检查是否有topic权限, topic:username&topic*/private Boolean checkTopic(String resourceName, List<String> topics, String username) {for (String topic : topics) {if (topic == null || topic.length() == 0) {continue;}String tmp = username + KAFKA_TOPIC_SPLIT + topic;if (tmp.equals(resourceName)) {return Boolean.TRUE;}}return Boolean.FALSE;}/*** 查询数据库*/private List<String> queryDb(String username) {List<String> dbList = new ArrayList<>();String userQuery = "select t.topic\n" +" from topic t\n" +" left join mq_info i on t.mq_id = i.mq_id\n" +" where i.default_instance = 1 and t.del_status = 0 and t.username = ?";Connection conn = null;try {conn = dataSource.getConnection();PreparedStatement statement = conn.prepareStatement(userQuery);statement.setString(1, tenantId);ResultSet resultSet = statement.executeQuery();while (resultSet.next()) {dbList.add(resultSet.getString("topic"));}} catch (Exception e) {logger.error("-------------------数据库查询topic异常:{}", e);throw new RuntimeException(e);} finally {if (conn != null) {try {conn.close();} catch (SQLException e) {throw new RuntimeException(e);}}}return dbList;}/*** 创建权限*/@Overridepublic List<? extends CompletionStage<AclCreateResult>> createAcls(AuthorizableRequestContext authorizableRequestContext, List<AclBinding> list) {logger.error("------------------createAcls----没有创建权限操作");throw new UnsupportedOperationException();}/*** 删除权限*/@Overridepublic List<? extends CompletionStage<AclDeleteResult>> deleteAcls(AuthorizableRequestContext authorizableRequestContext, List<AclBindingFilter> list) {logger.error("------------------deleteAcls----没有删除权限操作");throw new UnsupportedOperationException();}@Overridepublic Iterable<AclBinding> acls(AclBindingFilter aclBindingFilter) {//logger.info("------------------acls-----获取符合查询条件的Acl操作");ArrayList aclBindings = new ArrayList();return aclBindings;}@Overridepublic void close() throws IOException {if (dataSource != null) {dataSource.close();}}@Overridepublic void configure(Map<String, ?> map) {String superUsers = (String) map.get(SUPER_USERS_PROP);//logger.info("------------------superUsers:{}", superUsers);if (superUsers == null || superUsers.isEmpty()) {superUserSet = new HashSet<>();} else {superUserSet = Arrays.stream(superUsers.split(";")).map(String::trim).collect(Collectors.toSet());}Object endbAclObject = map.get(ENABLE_DB_ACL);if (Objects.isNull(endbAclObject)) {logger.error("------------------缺少开关配置 enable_db_acl!");enableDbAcl = Boolean.FALSE;return;}enableDbAcl = TRUE.equalsIgnoreCase(endbAclObject.toString());if (!enableDbAcl) {return;}dataSource = DataSourceUtil.getIotInstance(map);}}

编译打包运行

编译打成jar包之后,需要放到libs上当,D:\kafka_2.12-3.5.0\libs\xxx。
注意:还有代码中使用了第三方相关依赖包也需要一起放入。
在这里插入图片描述

重启kafka后生效,观察日志,可以看到用户连接后,发送和订阅就会去查询数据库,查询到用户没有权限时,会提示报错如下。

在这里插入图片描述


https://www.xjx100.cn/news/3092488.html

相关文章

C语言进制转换(1112:进制转换(函数专题))

题目描述 输入一个十进制整数n&#xff0c;输出对应的二进制整数。常用的转换方法为“除2取余&#xff0c;倒序排列”。将一个十进制数除以2&#xff0c;得到余数和商&#xff0c;将得到的商再除以2&#xff0c;依次类推&#xff0c;直到商等于0为止&#xff0c;倒取除得的余数…

78基于matlab的BiLSTM分类算法,输出迭代曲线,测试集和训练集分类结果和混淆矩阵

基于matlab的BiLSTM分类算法&#xff0c;输出迭代曲线&#xff0c;测试集和训练集分类结果和混淆矩阵&#xff0c;程序有详细注释&#xff0c;数据可更换自己的&#xff0c;程序已调通&#xff0c;可直接运行。

谈谈你对mvc和mvvm的理解

MVC和MVVM是软件开发中两种常见的架构模式&#xff0c;各自有不同的优缺点。 MVC&#xff08;Model-View-Controller&#xff09;是一种经典的架构模式&#xff0c;将应用程序分为三个部分&#xff1a;模型&#xff08;Model&#xff09;、视图&#xff08;View&#xff09;和…

[计算机网络实验]头歌 实验二 以太网帧、IP报文分析

第1关&#xff1a;Wireshark基本使用入门 【实验目的】 1、掌握wireshark工具的基本使用方法 【实验环境】 1、头歌基于Linux的虚拟机桌面系统 2、网络报文分析工具wireshark 3、浏览器firefox 【本地主机、平台虚拟机之间数据传递】 1、文本的复制与粘贴 操作入口&…

宇视科技通过stm32叠加字符串

void sendtoYskj(uint8_t *cameraIp,uint16_t cameraSrcPort,uint16_t cameraDstPort,uint8_t *userName,uint8_t *pwd,uint8_t lineNum,int camNo)//宇视科技 { int flag = 1; int sock = -1,connected; int send_data_len; int recv_data_len; //char str…

全栈程序员太难了,这个报表工具别再错过了!!

打开百度百科&#xff0c;全栈工程师的解释&#xff1a;是指掌握多种技能&#xff0c;可以胜任前端和后端&#xff0c;能用多种技能独立完成产品的人。 对于这个答案我是保持观望的态度。如果说能同时开发前端和后端&#xff0c;还能独立完成产品&#xff0c;它就是全栈工程师…

NSSCTF web刷题记录6

文章目录 [HZNUCTF 2023 final]eznode[MoeCTF 2021]地狱通讯-改[红明谷CTF 2022] Smarty Calculator方法一 CVE-2021-26120方法二 CVE-2021-29454方法三 写马蚁剑连接 [HZNUCTF 2023 final]eznode 考点&#xff1a;vm2沙箱逃逸、原型链污染 打开题目&#xff0c;提示找找源码 …

基于单片机公交安全预警系统仿真设计

**单片机设计介绍&#xff0c; 基于单片机公交安全预警系统仿真设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机的公交安全预警系统可以被设计成能够实时监测公交车辆的行驶状态&#xff0c;并在发生异常情况时进行…