EANet:用于医学图像分割的迭代边缘注意力网络

news/2023/11/30 9:55:24

EANet: Iterative edge attention network for medical image segmentation

  • EANet:用于医学图像分割的迭代边缘注意力网络
    • 背景
    • 贡献
    • 实验
    • 方法
      • Dynamic scale-aware context module(动态规模感知上下文模块)
      • Edge attention preservation module(边界注意力保持模块)
    • 损失函数
    • Thinking

EANet:用于医学图像分割的迭代边缘注意力网络

Pattern Recognition【2022】
论文:https://www.sciencedirect.com/science/article/pii/S0031320322001170
代码:https://github.com/DLWK/EANet

背景

由于(1)医学图像目标的尺度多样性和(2)医学图像的复杂上下文环境,包括结构边界的模糊性、形状的复杂性和纹理的异质性,这仍然是一项具有挑战性的任务。为了全面应对这些挑战,我们提出了一种新的、有效的迭代边缘注意力网络(EANet),用于医学图像分割,步骤如下。首先,我们提出了一个动态尺度感知上下文(DSC)模块,该模块动态调整感受野以有效地提取多尺度上下文信息。其次,采用边缘注意力保持(EAP)模块来有效地去除噪声,并帮助边缘流专注于仅处理边界相关信息。最后,设计了一个多级成对回归(MPR)模块,将互补的边缘和区域信息相结合,以细化模糊结构。这种迭代优化有助于学习更好的表示和更准确的显著性图。

贡献

  1. 我们提出了一种新颖有效的迭代边缘注意力网络(EANet)来全面解决医学图像分割的挑战。所提出的EANet可以处理医学图像领域中对象的大规模变化结构边界的模糊性
  2. 我们设计了一个DSC模块来有效地自学习对象的最佳感受野,以捕获多尺度上下文信息,这可以提高所提出的EANet在处理对象大小和形状变化很大的复杂情况时的能力。
  3. 我们提出了一种可以有效提取目标边缘信息的EAP模块,该模块可以抑制低电平背景噪声并保留边缘相关信息。
  4. 我们进一步构建了一个MPR模块,该模块有效地利用了边缘和区域信息之间的互补性。这种多级特征之间的迭代优化有助于学习更好的表示和更准确的显著性图,尤其是它们的边界变得更细粒度
    在这里插入图片描述

实验

应用一个简单的随机水平翻转来增加数据

  1. LIDC-IDRI数据集:提取了结节核心对应的CT切片,并裁剪成96×96的斑块图像。我们总共获得了2629张肺结节的2D图像,用于评估我们的框架。为了进行评估,我们对所有方法进行了5倍的交叉验证。因此,我们在每个折叠处使用2104个图像进行训练,使用525个图像进行测试。
  2. 新冠肺炎CT分割数据集:仅由10张标记图像组成。将图像随机分为训练(50张图像)、验证(5张图像)和测试(45张图像)。我们通过将图像大小调整为352×352分辨率来预处理图像
  3. 肺结节分析(LUNA)竞赛2:这是进一步诊断肺结节疾病的基础。该数据集包含534个2D样本(512-512像素)和相应的标签图像,可以从官方网站免费下载。我们使用80%的图像作为训练集,其余20%作为测试集,并进行交叉验证。
  4. 胸部X射线(CXR)中进行肺部分割实验,这是目前用于肺部健康计算机辅助诊断(CAD)的最佳视觉介质。Montgomery Country(MC)数据集[48]:包含138张CXR图像。在我们的实验中,我们使用110张图像进行训练,其余28张图像进行测试。
  5. TN-SCUI 2020 challenge3提供,作为MICCAI 2020的一部分:该数据集由3644张来自美国患者的图像组成,包括不同分辨率的不同类型甲状腺病变。有经验的医生给结节的注释贴上标签。在我们的实验中,在训练之前,通过水平、垂直平移和随机旋转操作将数据集扩展到7288张图像。数据集分为:训练集(60%)、验证集(20%)和测试集(20%。我们通过将图像大小调整为512×512分辨率来预处理图像。
    在这里插入图片描述

方法

在这里插入图片描述

Dynamic scale-aware context module(动态规模感知上下文模块)

在这里插入图片描述
在瓶颈层加入DSC模块,由不同空洞率的空洞卷积和DFS组成,DFS提供注意力。空洞卷积用于捕获多尺度特征,DFS特征动态选择,由于相邻尺度之间的相关性

Edge attention preservation module(边界注意力保持模块)

在这里插入图片描述
输入是编码器的四个特征图,1x1卷积改变维度之后从低到高逐层细化,Residual Block提取特征,Gated Conv特征筛选,最后1x1卷积提取边界特征

损失函数

边界损失
在这里插入图片描述
分割损失
在这里插入图片描述
混合损失
在这里插入图片描述

Thinking


https://www.xjx100.cn/news/3092476.html

相关文章

云备份——初步认识及环境搭建

文章目录 整体功能简介云备份功能实现目标服务器程序负责功能细分服务端模块划分客户端功能细分客户端模块划分 环境搭建gcc安装 jsoncppbundle库 与 httplib库安装 整体功能简介 云备份功能 自动将本地计算机上指定文件夹中需要备份的文件上传备份到服务器中 并且能够通过浏…

Transformer——encoder

本文参考了b站的Eve的科学频道中的深入浅出解释Transformer原理和DASOU讲AI中的Transformer从零详解。 入浅出解释Transformer原理 Transformer从零详解 前言: 在自然语言识别中,之前讲过lstm,但是lstm有明显的缺陷,就是当文本过…

Blender中的集合(collection)概念

集合是一种逻辑上的分组方式,它可以让你把一些相似或相关的对象放在一起,而不影响它们的变换关系(不像父子关系那样)。集合可以用来简化你的场景,或者方便你在不同的文件或场景之间进行追加或链接。 集合有以下的特点…

【OpenCV实现图像:使用OpenCV进行物体轮廓排序】

文章目录 概要读取图像获取轮廓轮廓排序小结 概要 在图像处理中,经常需要进行与物体轮廓相关的操作,比如计算目标轮廓的周长、面积等。为了获取目标轮廓的信息,通常使用OpenCV的findContours函数。然而,一旦获得轮廓信息后&#…

金蝶云星空套打设计

文章目录 金蝶云星空套打设计下载登录打开需要创建套打的单据新建套打模板数据中心-发货通知单-设置预览 金蝶云星空套打设计 下载 登录 打开需要创建套打的单据 KD开头,是标准产品预设。 新建套打模板 默认A4纸 默认插入三行三列。 拖入文本,填写内容…

谷歌浏览器任意文件访问漏洞(CVE-2023-4357)复现

1.漏洞级别 高危 2.漏洞描述 该漏洞的存在是由于 Google Chrome中未充分验证 XML 中不受信任的输入。远程攻击者可利用该漏洞通过构建的 HTML 页面绕过文件访问限制&#xff0c;导致chrome任意文件读取。 总结&#xff1a;一个XXE漏洞 3.利用范围 Google Chrome < 116.…

【Python爬虫】8大模块md文档集合从0到scrapy高手,第7篇:selenium 数据提取详解

本文主要学习一下关于爬虫的相关前置知识和一些理论性的知识&#xff0c;通过本文我们能够知道什么是爬虫&#xff0c;都有那些分类&#xff0c;爬虫能干什么等&#xff0c;同时还会站在爬虫的角度复习一下http协议。 爬虫全套笔记地址&#xff1a; 请移步这里 共 8 章&#x…

linux篇---修改图片权限

linux篇—修改图片权限 find . -name "*.jpg" | xargs chmod rfind . -name "*.jpg" | xargs sudo chmod -x find . -name "*.jpg" | xargs ls -l