【OpenCV实现图像:使用OpenCV进行物体轮廓排序】

news/2024/2/21 10:41:46

文章目录

    • 概要
    • 读取图像
    • 获取轮廓
    • 轮廓排序
    • 小结

概要

在图像处理中,经常需要进行与物体轮廓相关的操作,比如计算目标轮廓的周长、面积等。为了获取目标轮廓的信息,通常使用OpenCV的findContours函数。然而,一旦获得轮廓信息后,可能会发现轮廓的顺序是无序的,如下图左侧所示:
在这里插入图片描述

在这个图中,每个轮廓都被找到,但它们的顺序是混乱的,这使得难以对每个目标进行准确的测量和分析。为了解决这个问题,我们需要对轮廓进行排序,以便更方便地进行后续处理。
在这里插入图片描述

读取图像

开始读取图像并生成其边缘检测图。

import cv2
import numpy as np# 读取图像
image = cv2.imread('img_4.png')# 初始化累积边缘图
accumEdged = np.zeros(image.shape[:2], dtype='uint8')# 对每个通道进行边缘检测
for chan in cv2.split(image):chan = cv2.medianBlur(chan, 11)edged = cv2.Canny(chan, 50, 200)accumEdged = cv2.bitwise_or(accumEdged, edged)# 显示边缘检测图
cv2.imshow('Edge Map', accumEdged)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

获取轮廓

opencv-python中查找图像轮廓的API为:findContours函数,该函数接收二值图像作为输入,可输出物体外轮廓、内外轮廓等等。

import cv2
import numpy as np# 读取图像
image = cv2.imread('img_4.png')# 初始化累积边缘图
accumEdged = np.zeros(image.shape[:2], dtype='uint8')# 对每个通道进行边缘检测
for chan in cv2.split(image):chan = cv2.medianBlur(chan, 11)edged = cv2.Canny(chan, 50, 200)accumEdged = cv2.bitwise_or(accumEdged, edged)# 显示边缘检测图
cv2.imshow('Edge Map', accumEdged)# 寻找图像轮廓
cnts, _ = cv2.findContours(accumEdged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:5]# 复制原始图像
orig = image.copy()# 对未排序的轮廓进行可视化
for (i, c) in enumerate(cnts):orig = cv2.drawContours(orig, [c], -1, (0, 255, 0), 2)cv2.putText(orig, f'Contour #{i+1}', (10, 30*(i+1)), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)# 显示未排序的轮廓可视化结果
cv2.imshow('Unsorted Contours', orig)
cv2.imwrite("./Unsorted_Contours.jpg", orig)cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述
在OpenCV的不同版本中,cv2.findContours 函数的返回值形式有所不同。在OpenCV 2.X版本中,函数返回两个值,而在OpenCV 3以上版本中,返回三个值。为了适配这两种版本,可以实现一个名为 grab_contours 的函数,根据不同的版本选择正确的轮廓返回位置。以下是该函数的代码:

def grab_contours(cnts):# 如果 cv2.findContours 返回的轮廓元组长度为 '2',则表示使用的是 OpenCV v2.4、v4-beta 或 v4-officialif len(cnts) == 2:cnts = cnts[0]# 如果轮廓元组长度为 '3',则表示使用的是 OpenCV v3、v4-pre 或 v4-alphaelif len(cnts) == 3:cnts = cnts[1]return cnts

这个函数简单地检查返回的轮廓元组的长度,根据长度选择正确的轮廓返回位置。通过使用这个函数,可以确保代码在不同版本的OpenCV中都能正确地工作。

轮廓排序

通过上述步骤,得到了图像中的所有物体的轮廓,接下来定义函数sort_contours函数来实现对轮廓进行排序操作,该函数接受method参数来实现按照不同的次序对轮廓进行排序,比如从左往右,或者从右往左.

import cv2
import numpy as npdef sort_contours(cnts, method='left-to-right'):reverse = Falsei = 0if method == 'right-to-left' or method == 'bottom-to-top':reverse = Trueif method == 'bottom-to-top' or method == 'top-to-bottom':i = 1boundingBoxes = [cv2.boundingRect(c) for c in cnts](cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes), key=lambda b: b[1][i], reverse=reverse))return (cnts, boundingBoxes)def draw_contour(image, c, i):M = cv2.moments(c)cX = int(M["m10"] / M["m00"])cY = int(M["m01"] / M["m00"])cv2.drawContours(image, [c], -1, (0, 255, 0), 2)cv2.putText(image, f'#{i+1}', (cX - 20, cY), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)return image# 读取图像
image = cv2.imread('img_4.png')# 初始化累积边缘图
accumEdged = np.zeros(image.shape[:2], dtype='uint8')# 对每个通道进行边缘检测
for chan in cv2.split(image):chan = cv2.medianBlur(chan, 11)edged = cv2.Canny(chan, 50, 200)accumEdged = cv2.bitwise_or(accumEdged, edged)# 显示边缘检测图
cv2.imshow('Edge Map', accumEdged)# 寻找图像轮廓
cnts, _ = cv2.findContours(accumEdged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:5]# 复制原始图像
orig = image.copy()# 对未排序的轮廓进行可视化
for (i, c) in enumerate(cnts):orig = draw_contour(orig, c, i)
cv2.imshow('Unsorted Contours', orig)# 轮廓排序
(cnts, boundingboxes) = sort_contours(cnts, method='left-to-right')# 对排序后的轮廓进行可视化
for (i, c) in enumerate(cnts):image = draw_contour(image, c, i)
cv2.imshow('Sorted Contours', image)cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述
下面是对其中的函数 sort_contours 的解释:

def sort_contours(cnts, method='left-to-right'):# 初始化反转标志和排序索引reverse = Falsei = 0# 处理反向排序if method == 'right-to-left' or method == 'bottom-to-top':reverse = True# 如果按照 y 而不是 x 对外接框进行排序if method == 'bottom-to-top' or method == 'top-to-bottom':i = 1# 获取轮廓的外接矩形框boundingBoxes = [cv2.boundingRect(c) for c in cnts]# 使用 lambda 函数按照指定的坐标轴对外接框进行排序(cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes), key=lambda b: b[1][i], reverse=reverse))return (cnts, boundingBoxes)

函数接受轮廓列表 cnts 和排序方法 method 作为参数。首先初始化了反转标志和排序索引,根据指定的排序方法设置这些标志。然后,使用列表推导式和 cv2.boundingRect 函数获取每个轮廓的外接矩形框。最后,通过使用 sorted 函数和 zip 函数,根据外接框的 x 或 y 坐标进行排序。

在排序的结果中,cnts 存储了按照指定方法排序后的轮廓,而 boundingBoxes 存储了相应的外接矩形框。这两个结果作为元组返回给调用函数。

在主调用部分,代码如下:

# 使用 sort_contours 函数对轮廓进行排序
(cnts, boundingboxes) = sort_contours(cnts, method=args['method'])
# 遍历排序后的轮廓并绘制
for (i, c) in enumerate(cnts):image = draw_contour(image, c, i)
# 显示排序后的结果
cv2.imshow('Sorted', image)
cv2.waitKey(0)

在这里,调用了 sort_contours 函数,并将返回的排序后的轮廓存储在 cnts 中。然后,通过遍历这些排序后的轮廓,并调用 draw_contour 函数绘制,最后使用 cv2.imshow 显示排序后的结果。

小结

边缘检测:通过中值模糊和Canny边缘检测对图像进行处理,生成累积边缘图。轮廓查找:使用 cv2.findContours 函数找到累积边缘图中的轮廓,并按面积降序排序。未排序轮廓可视化:将未排序的轮廓绘制在原始图像上,并标注轮廓编号。轮廓排序函数 sort_contours:实现根据指定方法对轮廓进行排序,可选择从左到右、从右到左、从上到下或从下到上排序。轮廓排序和可视化:使用排序函数对轮廓进行排序,然后将排序后的轮廓绘制在原始图像上,同时标注轮廓编号。

https://www.xjx100.cn/news/3092472.html

相关文章

金蝶云星空套打设计

文章目录 金蝶云星空套打设计下载登录打开需要创建套打的单据新建套打模板数据中心-发货通知单-设置预览 金蝶云星空套打设计 下载 登录 打开需要创建套打的单据 KD开头,是标准产品预设。 新建套打模板 默认A4纸 默认插入三行三列。 拖入文本,填写内容…

谷歌浏览器任意文件访问漏洞(CVE-2023-4357)复现

1.漏洞级别 高危 2.漏洞描述 该漏洞的存在是由于 Google Chrome中未充分验证 XML 中不受信任的输入。远程攻击者可利用该漏洞通过构建的 HTML 页面绕过文件访问限制&#xff0c;导致chrome任意文件读取。 总结&#xff1a;一个XXE漏洞 3.利用范围 Google Chrome < 116.…

【Python爬虫】8大模块md文档集合从0到scrapy高手,第7篇:selenium 数据提取详解

本文主要学习一下关于爬虫的相关前置知识和一些理论性的知识&#xff0c;通过本文我们能够知道什么是爬虫&#xff0c;都有那些分类&#xff0c;爬虫能干什么等&#xff0c;同时还会站在爬虫的角度复习一下http协议。 爬虫全套笔记地址&#xff1a; 请移步这里 共 8 章&#x…

linux篇---修改图片权限

linux篇—修改图片权限 find . -name "*.jpg" | xargs chmod rfind . -name "*.jpg" | xargs sudo chmod -x find . -name "*.jpg" | xargs ls -l

郎酒“掉队”,经销商们能等来春天吗?

文 | 螳螂观察&#xff08;TanglangFin&#xff09; 作者 | 渡过 有“六朵金花”之称的川酒品牌中&#xff0c;五粮液、泸州老窖、舍得、水井坊都已成功上市&#xff0c;只剩下郎酒和剑南春未上市。 与IPO的“掉队”相对应的&#xff0c;是郎酒在冲刺高端、内部管理、渠道管…

预计2023年交付35万台,增速超400%!HUD硬核玩家强势崛起

随着HUD市场渗透率加速提升&#xff0c;其高速增长期已经来临。 W-HUD和AR-HUD在中国市场的萌芽导入期是在2020年前后&#xff0c;此前HUD市场不温不火&#xff0c;主要归因于以往W-HUD FOV较小&#xff0c;成像画面有限&#xff0c;显示内容简单且效果粗糙&#xff1b;而AR-H…

vivado产生报告阅读分析13-时序报告9

1、Report Exceptions 在综合后的流程中可随时使用“ Report Exceptions ” &#xff08; 例外报告 &#xff09; 命令。“ Report Exception ”命令用于报告以下信息&#xff1a; • 在设计中已置位并且影响时序分析的所有时序例外 • 在设计中已置位但由于被其他时序例外覆…

Mrakdown Nice:格式

标题 缩进 删除线 斜体 加粗